A Public-Key Traitor Tracing Scheme with Revocation Using Dynamic Shares
نویسندگان
چکیده
We proposed a new public-key traitor tracing scheme with revocation capability using the dynamic share and entity revocation techniques. The enabling block of our scheme is independent of the number of subscribers, but dependent on the collusion and revocation thresholds. Each receiver holds one decryption key only. Our traitor tracing algorithm works in a black-box way and is conceptually simple. The distinct feature of our scheme is that when the traitors are found, we can revoke their private keys (up to some threshold z) without updating any private key of the remaining subscribers. Furthermore, we can restore the decryption privilege of a revoked private key later. We can actually increase the revocation capability beyond z with dynamic assignment of shares into the enabling block. This property makes our scheme highly practical. Previously proposed public-key traitor tracing schemes have to update all existing private keys even when revoking one private key only. Our scheme is as efficient as Boneh and Franklin’s scheme in many aspects. Our traitor tracing scheme is fully k-resilient such that our traitor tracing algorithm can find all traitors if the number of them is k or less. The encryption algorithm of our scheme is semantically secure assuming that the decisional Diffie-Hellman problem is hard. We also proposed a variant traitor tracing scheme whose encryption algorithm is semantically secure against the adaptive chosen ciphertext attack assuming hardness of the decisional Diffie-Hellman problem.
منابع مشابه
A Generic View on Trace-and-Revoke Broadcast Encryption Schemes
At Eurocrypt 2011, Wee presented a generalization of threshold public key encryption, threshold signatures, and revocation schemes arising from threshold extractable hash proof systems. In particular, he gave instances of his generic revocation scheme from the DDH assumption (which led to the Naor-Pinkas revocation scheme), and from the factoring assumption (which led to a new revocation scheme...
متن کاملFully Scalable Public-Key Traitor Tracing
Traitor Tracing Schemes constitute a very useful tool against piracy in the context of digital content broadcast. In such multi-recipient encryption schemes, each decryption key is fingerprinted and when a pirate decoder is discovered, the authorities can trace the identities of the users that contributed in its construction (called traitors). Public-key traitor tracing schemes allow for a mult...
متن کاملPublic-Key Revocation and Tracing Schemes with Subset Difference Methods
Trace and revoke is broadcast encryption with the traitor tracing functionality. It is a very powerful primitive since it can revoke users whose private keys are compromised by finding them using a tracing algorithm if a pirate decoder is given. Public-key trace and revoke (PKTR) is a special type of trace and revoke such that anyone can run the tracing algorithm and anyone can create an encryp...
متن کاملPublic-Key Revocation and Tracing Schemes with Subset Difference Methods Revisited
Trace and revoke is broadcast encryption with the traitor tracing functionality. It is a very powerful primitive since it can revoke users whose private keys are compromised by finding them using a tracing algorithm if a pirate decoder is given. Public-key trace and revoke (PKTR) is a special type of trace and revoke such that anyone can run the tracing algorithm and anyone can create an encryp...
متن کاملCodes Based Tracing and Revoking Scheme with Constant Ciphertext
In broadcast encryption system certain users may leak their decryption keys to build pirate decoders, so traitor tracing is quite necessary. There exist many codes based traitor tracing schemes. As pointed out by Billet and Phan in ICITS 2008, these schemes lack revocation ability. The ability of revocation can disable identified malicious users and users who fail to fulfill the payments, so th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 35 شماره
صفحات -
تاریخ انتشار 2001